FALSE SITTEE POINT,
STANN CREEK DISTRICT,
BELIZE.

BIOLOGICAL AND PHYSICAL
SURVEY,
1995

Belize Tropical Forest
Studies Publication # 2
March 1995

J.C.MEERMAN & T.BOOMSMA,
BELIZE TROPICAL FOREST STUDIES, P.O.BOX 208,
BELMOPAN, BELIZE.
This study was made possible through cooperation with:
Caribbean Shores Ltd.

Publications of Belize Tropical Forest Studies:


# TABLE OF CONTENTS

| Title page | 0 |
| Table of contents | 1 |
| Table of figures | 1 |
| Table of tables | 2 |
| Table of maps | 2 |
| Description of the project area and immediate surroundings | 5 |
| Introduction | 5 |
| Local communities | 5 |
| Vegetation | 6 |
| Fauna | 16 |
| Soils | 20 |
| Water | 23 |
| Air | 30 |
| Climate | 30 |
| Cultural heritage | 31 |
| Landscape | 31 |
| Natural resources | 32 |
| Marine environment | 34 |
| Land use | 34 |
| Literature | 37 |

## Table of figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mixed forest association.</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Medium to high mangrove association.</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Riverain forest.</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td><em>Urospatha</em> <em>tuarkheimii</em>.</td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>Palmetto swamp.</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>Reed lands.</td>
<td>15</td>
</tr>
<tr>
<td>7.</td>
<td>Sedge marsh.</td>
<td>16</td>
</tr>
<tr>
<td>8.</td>
<td>Mangrove along the coast, south of False Sittee Point.</td>
<td>29</td>
</tr>
<tr>
<td>9.</td>
<td>Rice paddy valves.</td>
<td>29</td>
</tr>
<tr>
<td>10.</td>
<td>Beach view, facing Hopkins.</td>
<td>32</td>
</tr>
</tbody>
</table>
Table of tables

Table 1. Result soil pits. ............................................. 21
Table 2. Daily stages of the Sittee River at Kendal Bridge. .......... 25
Table 3. Permeability (m/day). ....................................... 28

Table of maps

Map 1. The location of the project area in Belize. .................. 3
Map 3. The location of the project area in the Stann Creek district, with the natural drainage pattern of the area. ................. 4
Map 4. Vegetation map according to Wright et al. (1959). .......... 7
Map 5. Soil map according to Wright et al. (1959). ................. 7
Map 6. Vegetation map of project area. ......................... 9
Map 7. Aerial picture of the project area. .......................... 10
Map 8. Location of soil samples in the project area. ............... 22
Map 9. Boundaries of the watersheds of the Sittee River and the Freshwater Creek ................................. 24
Map 10. Potential land use map according to Wright et al. (1959). 35
Map 11. Land use categories according to King et al. (1989). .... 35
Map 1. The location of the project area in Belize.

Scale 1: 1,800,000
Map 3.
The location of the project area in the Stann Creek district, and the natural drainage pattern of the area.

- = project area
- = natural drainage pattern

scale approx. 1: 118,000

* situation observed in February and March 1995.
DESCRIPTION OF THE PROJECT AREA AND IMMEDIATE SURROUNDINGS.

Introduction.
The term "project area" as used in this document is the ±660 acre Caribbean Shores Ltd property that starts 2.8 km south of the village of Hopkins and 2.5 km east of Sittee River Village (High Sands on the map). The project area is connected with both villages by an unpaved road which was constructed in the early nineties (see map 3). Belize Tropical Forest Studies conducted several field surveys in this area in the period February and March 1995.

Local communities

Hopkins
Hopkins is a relatively large fishing-farming community on the coast, established in 1931 after a hurricane had destroyed the village New Town which was located 4.6 km north of the present Hopkins. Hopkins was completely destroyed by hurricane Hattie in 1961, but this time, the village was rebuild at the same site. At present the village has 1200-1400 inhabitants in about 220 households. Most people still earn a living through fishing and farming.

Culturally the village is classified as a Garifuna community. The Garifuna maintain their own language and have a rich cultural heritage. Traditionally the Garifuna are a coastal people. The village has one pre-school and two primary schools. Secondary education is offered in Dangriga and a schoolbus brings the students to school on a daily basis.

Before the construction of the road that links Hopkins with the southern highway early in the seventies, the only contact with the outside world was by dory across the sea. Also the farmlands had to be accessed by sea and lagoons. This construction of the road was the first major change to the village. Now the village has 24 hour electricity, piped water, community telephone and cable television.

Meanwhile, fish stocks are exhausted and farmlands are losing their fertility. The land and the sea can no longer support the growing number of people in the village. For this reason many adults of working age have temporarily migrated to the USA and elsewhere to work and the community has a relatively high proportion of older people and young children. A number of these emigrants return to Hopkins to build a house and to retire.

In the past houses were traditionally built using local materials such as Palmetto stems for walls and Coconut leaf for thatching. These techniques are now being abandoned in favor of wooden, or even concrete constructions.

All these factors constitute important social and economic changes to the village. From an independent community, relying on subsistence farming and fishing, Hopkins has turned into a community depending on the market economy of the outside world.
The last 5 years initiatives developed to start businesses in the tourist industry. At the moment there are at least 3 small guest houses which are focusing on the lower section of the market.

**Sittee River Village**

Sittee River Village is a small but very long (6 km) village, located mainly on a high flood bank on the north side of the Sittee River. Density of housing is low. In the village live about 350 people, mostly of Creole descent. Houses are mainly of lumber but many are gradually being replaced by concrete structures. Because of the frequent flooding of the Sittee River, many houses are constructed on stilts.

Sittee River Village used to be a lot larger in the past but after hurricane Hattie, many people moved to Silk Grass Village along the Southern Highway.

The main source of income is through agriculture although tourism is gaining importance as a source of income and there are several small guesthouses which mostly focus on the lower section of the tourism market. The recently opened Jaguar Reef Lodge within the project area is employing several people from Sittee River Village. Other job opportunities are virtually non-existent.

Sittee River Village has a pre-school, one primary school, 24 hour electricity, a community telephone, and a rural water system is in development.

**Vegetation**

Vegetation patterns are indicators for soil types and potential land use with direct implications for development planning. For this reason, considerable attention has been paid to the vegetation of the project area.

Wright et al. (1959) recognized only two vegetation types in the current project area (see map 4). These vegetation types being:

- type 31, "Red Mangrove - White Mangrove association" (occurring along most of the coast and along Sittee River). "With occasional Black Mangrove and sometimes a few cabbage palm, caway and pucte. The soil accumulates a good deal of undecomposed organic matter but not much of this could be called true peat. Inundation with salt water seldom occurs".

- type 29, "Buttonwood - Red Mangrove - White mangrove assemblage" (this assemblage being situated in between the 2 patches of the above mentioned association). "Some small
MAP 4.

VEGETATION MAP FOR THE PROJECT AREA AND SURROUNDINGS ACCORDING TO WRIGHT ET AL. (1959)

29: "Buttonwood - Red Mangrove assemblage, some small patches of dumb Cane, Sea Grape and Palmetto occur.

31: "Red Mangrove - White Mangrove association with occasional Black Mangrove and sometimes a few Cabbage Palm, Caway and Pucite.

MAP 5.

SOIL MAP FOR THE PROJECT AREA AND SURROUNDINGS ACCORDING TO WRIGHT ET AL. (1959)

1a: Coastal sands

36c: Alluvial soils
patches of dumb cane, sea grape and palmetto occur. This forest is found on coastal sands which are still occasionally inundated by sea water. The appearance of buttonwood indicates declining salinity. The soils have peat and partly-rotted roots in the top few inches.

In addition, map III of Gray et al. (1990) shows the distribution of mangroves in the Sittee point area. While Zisman (1992) mentions mangrove south of Hopkins, to and beyond Sittee Point. Other literature on the vegetation of the area is not available.

Field work conducted by researcher revealed that Wright et al’s (1959) vegetation map is a simplification of the true situation and of little use in the current study. Gray et al’s (1990) mangrove distribution map was found to be largely correct.

The general findings of the field survey by researcher was that apart from the forest on the sandbar directly along the sea coast, most of the vegetation within project area can be classified as “swamp”. Much of the area consists of waterlogged and/or badly drained soils subject to frequent flooding, with associated flora.

The whole project area can be seen as a basin enclosed by higher edges formed by sand ridges along the sea coast and river benches along the Sittee River. Rainwater drains very slowly from within this area and apart from inundation by rain water, the area gets flooded by the Sittee River several times per year. Flooding by the sea does not seem to occur frequently.

The influence of sand deposits by the sea and clay deposits by the Sittee River with frequent mixing of the two, results in a highly complicated vegetation pattern. In some areas extensive peat formation has taken place while in other areas there are hardly any deposits of organic matter and the vegetation is rooted directly into the sand or clay. Due to its complexity, an exact mapping of the entire area was not feasible but a generalized vegetation map (map 6) has been produced to visualize conservation concerns.

The generalized vegetation map was compiled using the ±1:40.000 aerial picture of the project area that was provided by the Company (map 7). Vegetation patterns visible on this map were then ground-truthed while for the establishment of exact location, a Trimble Ensign Global Positioning System (GPS) was used.

In total, researcher, recognize 7 distinct vegetation types (map 6). These types being:

Mixed forest associations (see fig. 1)
This association follows the sandy bar behind the coastline. To the north, direction Hopkins (outside project area), the vegetation takes on the appearance of "broken ridge", with occasional Pines Pinus caribbea, Polewood Xylopia frutescens and Yemeri Vochysia hondurensis.
LITERATURE


Young, F. 1993. Jabiru Stork nesting sites in Belize. in.lit.